M.Sc. 1st Semester Examination-2022-23

MATHEMATICS

Course ID : 12152 Course Code : MATH/102C

Course Title : Linear Algebra \& Module Theory

Time : 2 Hours
Full Marks: 40

The figures in the right hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

1. (a) Let V and W be n -dimensional vector spaces over the field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Prove that T is linear if and only if the null space $\mathrm{N}(\mathrm{T})=\left\{0_{\mathrm{V}}!\right.$.
(b) Consider the basis $\mathrm{B}=\{(1,1,-1),(-1,1,1)$, $(1,-1,1)$ for the vector space R^{3} over R. Find the dual basis of B.
(c) Let V be the vector space of all $n \times n$ matrices over R. Let B be fixed $n x n$ matrix. If T is a linear operator on V defined by $T(A)=A B-B A$, and f is the trace function, what is $D^{t} f$?
$2+4+2$
2. (a) Find the eigenvalues and eigenspaces of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right)
$$

Is A diagonalizable? Give reasons for your answer.
(b) Write the vector space R^{3} over R as the direct sum of two of its subspaces.
$(2+2+2)+2$
3. (a) State and proof Cayley-Hamilton theorem for a linear operator.
(b) Define a triangulable linear operator. What can you say about the minimal polynomial of triangulable linear operator?
$(2+4)+(1+1)$
4. (a) Define $T: R^{3} \rightarrow R^{3}$ by $T(x, y, z)=(-x, x-y, 3 x+$ $2 y+2)$. Check whether T satisfies the polynomial $(x-1)(x+1)^{2}$. Find the minimal polynomial of T.
(b) Find the rational samonical form of the matrix

$$
A=\left(\begin{array}{ccc}
0 & -4 & 85 \\
1 & 4 & 30 \\
0 & 0 & 3
\end{array}\right)
$$

$$
(2+2)+1
$$

5. (a) Let P_{2} be the vector upace with infier prodict $\langle f, g\rangle=\int_{0} f(f) g(f) d t$. Show that the constant function 1 and the identity function are orthoumal in f,
(b) Let V be a finite dimensional inner produes apane cref F and let $g ; V \rightarrow Y$ be a lineaf traneformationt, Then prove that there existes a unique vector $y \in 4$ ankt that $g(x)=\langle x, y\rangle$ for all $x \in V$
(c) Prove that for a normal operater 't em an imact

$$
20402
$$

6. (a) Nee Gram-Bchmidt procese w obnain an erriomiottini basis from the masis set $13,0,41,(-1,9,7,12,0$, lifs of the Eucidean space in with ztarmatd batiaf product.

 $25(2 \cdot 41$

 of two submiodiulos way ned be s submudule.
 mictude homentor phism?
(4) Siate inc stricture therren for finitevy generatod

$$
(2+1 / 2 \times 152
$$

